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ABSTRACT
Assessment of resistance in any plant pathosystem involves the measurement, growth and development of the
pathogen in the host under the influence of the environment. Partial resistance is generally a quantitative
measure of disease progress over time and thus can be assessed quantitatively by means of (i) analysis of
components of resistance, (ii) estimation of different parameters for evaluation of resistance, (iii) analysis of
disease progress curves and (iv) analysis of stability of resistance. In this review, we discuss the analytical
approaches on each of these four aspects, beginning with the components of resistance through the parameters
to the multivariate analysis of disease progress curves involving principal component analysis, cluster analysis,
factor analysis, pattern analysis and also the parametric and non-parametric stability statistics to arrive at the
goal of selection of partial resistance. The merits and demerits of each method of assessment are discussed and
the most effective method of assessment of partial resistance in rice blast pathosystem is suggested. The analysis
of disease progress curves by multivariate analysis involving principal component analysis, cluster analysis,
factor analysis, pattern analysis, AMMI analysis and estimation of stability values are recommended for
determination of stable partial resistant genotypes.
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INTRODUCTION

Consequent upon the past bitter experiences on several
instances of breakdowns of vertical resistance in
different plant-pathosystems including the rice blast
pathosystem (Kiyosawa, 1981) and the total breakdown
of blast resistance in Korea in 1977 typhoon (Crill et
al., 1982; Ryu et al. 1987); concerted efforts are being
made by plant pathologists and breeders to develop
genotypes possessing rate-reducing type of horizontal
resistance or polygenic resistance or race non-specific
resistance (Vander Plank, 1963), general resistance
(Caldwell,1968), field resistance (Ezuka, 1972), dilatory
resistance (Browning et al., 1977) and partial resistance
(Parlevliet, 1979) for control of blast disease.

Resistance in any plant-pathosystem is defined
as the ability of the host to hinder the growth and/or
development of the pathogen (Robinson, 1969). There
are two types of resistance. A total prevention of

multiplication of the pathogen in the host is termed as
the complete resistance. On the contrary, partial
resistance is a form of incomplete resistance in which
the pathogen gets the scope to have reduced rate of
multiplication and slow rate of expression of disease
symptoms. The day to day progress of the disease from
the day of disease initiation till the end of the epidemics,
when plotted against the time in days, results in a disease
progress curve, which is usually sigmoid, although other
types of curves are encountered. Such disease progress
curve encompasses within it various elements of the
host, the pathogen, and the environment active at
different stages during the course of the epidemic
development and thus can be considered as a complete
expression of the anatomy of the disease. One can
dissect out these elements, analyze, compare and
classify the disease progress curves.

The assessment of disease resistance in any
plant-pathosystem can be made in various ways. One
may measure the disease incidence, defined as the
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number of plant units or tillers or heads or grains or
leaves infected and express as the percentage of the
total number of units assessed or the disease severity,
defined as the area of plant tissue affected by the
disease, and expressed as a percentage of the total
area assessed. The measures of disease incidence is
applicable for monocyclic simple interest diseases like
those for false smut, udbatta, kernel smut of rice, smut
of sugarcane etc., while, the measures of disease
severity is applicable for polycyclic compound interest
diseases like those for blast, brown spot, bacterial blight,
tungro virus disease of rice and the major rust disease
of wheat.

The assessment of partial resistance in different
plant-pathosystems have been accomplished by (i)
analysis of different components of resistance (Bonman
et al., 1991, Crill et al., 1982), (ii) estimation of different
parameters for evaluation of resistance (Crill et al., 1982,
Fry 1978, Fried et al. 1979, Jeger and Rollinson 2001)
and (iii) analysis of the disease progress curves ( Jeger
et al., 1983; Kendal and Stuart, 1968). The second
method has so far been commonly adopted worldwide
by plant pathologists as well as breeders in different
plant-pathosystems due to the ease in estimation of the
parameters. The disease severity can be assessed either
once at the peak of the epidemic or several times during
the course of epidemics at certain intervals. The former
method of assessment measures the cumulative effect
of the host-pathogen interactions operating during the
course of an epidemic, while the later measures the
path of epidemic progress by way of measuring the
area under disease progress curves, the apparent
infection rates and the time required for the disease to
reach a specific level of severity.

Analysis of components of resistance
In compound interest diseases, the disease severity is
the cumulative result of several factors or components
like (i) Incubation period (ICP) - the number of days
from inoculation to the first appearance of the visible
disease symptoms, (ii) Latent period (LP) - the number
of days from inoculation till the beginning of spore
production, (iii) Infectious period (IP) - the number of
days from initial sporulation till the lesion ceased to
produce spores, (iv) Infection frequency (IF) - the
number of penetration points observed per unit leaf area
from a given amount of inoculum load, (v) Infection

efficiency (IE) - the ratio of the number of sporulating
lesions developed per unit leaf area after 10 days of
inoculation to the number of penetration points per unit
leaf area expressed as percentage, (vi) Lesion number
(LN) - the total number of sporulating lesions per leaf,
(vii) Lesion size (LS), (viii) Lesion area (LA) - mean
lesion area of 50 lesions selected randomly, (ix) Necrotic
zone area (NZA) - the estimated necrotic zone area of
the lesion, (x) Chlorotic zone area (CZA) - the estimated
chlorotic zone area around the NZA, (xi) The lesion
cover (LC) - sum of NZA and CZA, (xii) Sporulation
capacity (SC) - the total number of conidia produced
by a lesion during the entire infectious period (SP/L),
(xiii) Spores produced per lesion per day (SP/L/D), and
(xiv) Spores produced per leaf per day (SP/Lf/D) by
multiplying SP/L with the LN/Lf .

Several such components of resistance have
been identified in different plant-pathosystems
(Parlevliet, 1979). In rice-blast pathosystem, some such
components of resistance like LN, LS and SC (Chou et
al., 1979); DE, LS and SC (Villareal et al., 1981); LP,
LN and SC (Brondy et al., 1988); DE, LP and SC
(Castano et al., 1989); ICP, LC, LN and SC (Nomura
and Ishi, 1989); hypal growth, dwarfing index, LN and
SC (Ryu et al., 1990); relative infection efficiency (RIE),
DE, SC, LS and ICP (Sun et al., 1990); diseased leaf
area (DLA), area under disease progress curve
(AUDPC), LS and SC (Wang and Wang, 1991) have
been identified. Mukherjee et al. (2013a) identified ICP,
LP, IP, IF, IE, LN, NZA, CZA and SP as important
components of slow-blasting resistance. These
components are genetic and heritable in nature and
maximum correlated response and relative selection
efficiency could be expected through selection for LN,
followed by LN+NZA (Mukherjee and Nayak, 1997a).
Partial resistance to M. grisea was recognized in two
tall fescue genotypes by longer ICP and LP, reduced
rate of disease progress and lesion expansion, lower
final disease incidence (FDI), final foliar blight incidence,
final mean lesion length (FLL) and  AUDPC (Tredway
et al., 2003). According to them, measurement of ICP,
LP, FDI and FLL were the most effective and efficient
methods for detecting M. grisea resistance in tall
fescue.

Mukherjee et al. (2013a) recognized three
factors each explaining distinct phases of the pathogen
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analysed through principal component analysis and
factor analysis (Fig. 1). These are (i) the establishment
phase involving IF, (ii) the growth phase involving ICP,
IP, LP, LA, LC, NZA and CZA, and (iii) the growth and
reproduction phase involving IE, LN, SP/L, SP/L/D,
SP/Lf/D and finally the area under disease progress
curve (AUDPC).

These components interact among themselves
and their effects are cumulative during the course of
an epidemic development. Hence, it becomes very
difficult to recognize host genotypes possessing such
type of resistance, especially from among a large
number of test materials, each with several components
of resistance. The application of multivariate analysis
has special advantage of simplifying such complexities,
since the host genotypes under study could be distinctly
separated into groups of specific levels of resistance
through clustering and ordination. Similar successful
numerical classification of the host genotypes on the
basis of their attributes of disease assessments at
different dates have been made for slow stem rusting

in wheat (Rees et al., 1979 a, b; Thompson and Rees,
1979), slow-mildewing in lettuce (Lebeda and Jendrulek,
1988), and early blight resistance in tomato (Madden
and Pennypacker, 1979). Mukherjee et al. (2013a) made
an attempt to simplify the complexity of genotype x
components interactions and classify rice genotypes on
the basis of different components of slow-blasting
resistance.

The different components of resistance
contribute independently or jointly towards development
of the disease. The contribution of each component
towards the final disease severity is difficult to estimate
since these components interact among themselves and
their effects are cumulative during the course of the
disease epidemic. Hence, it is essential to ascertain the
genetic and heritable nature of each component, the
environmental influence in expression of each
component, the association among these components
and finally the extent of contribution of each component
towards the final disease severity. Mukherjee and
Nayak (1997a) reported high genotypic coefficient of
variation (GCV) for all components of slow-blasting
resistance in rice, except ICP, LP and IF, thus suggesting
that these are least influenced by the environment. In
addition to high GCV, high values of heritability along
with high genetic advance, genetic gain, correlated
response and relative selection efficiency, obtained for
all the components, except the previously mentioned
three components, suggest that these components are
genetic and heritable in nature and are very important
in an effective selection programme. Similar results
were also reported by Nayak et al. (1987) for bacterial
blight resistance in rice.

The strong association among 10 components
of slow-blasting resistance in rice both at genotypic and
phenotypic levels, higher genotypic correlation than the
corresponding phenotypic correlation indicated the
modifying effects of environment on the association of
components at genotypic level (Mukherjee and Nayak,
1997a). Path coefficient analysis revealed highest direct
effect of LN followed by NZA on the area under disease
progress curve both at genotypic and phenotypic levels.
Indirect effects of fairly high magnitude were also
exerted by other components through LN and NZA
towards AUDPC. The LN and NZA were identified as
the most important genetic and heritable components
for indirect selection of slow-blasting resistance in rice.

Fig. 1. Diagram depicting the relationship among the
components of resistance and the principal components as
well as the factors. The signs of the coefficients dominating
the latent vectors are shown as positive (+) or negative (-)
and the corresponding vectors in brackets.
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Slow-blasting resistance in rice, characterized by longer
ICP and LP, shorter IP, lower IF, LN/Lf, NZA, CZA,
mean LA, LC, SC and finally lower AUDPC; was
recognized in 13 rice genotypes (Mukherjee et al.
2013a).

Index score
Evaluation of slow-blasting resistance, taking all the
component characters into consideration, is difficult
since the entire process is labour intensive and time
consuming. Indirect selection based on a few important
components those have significant contribution towards
the final disease, may result in substantial gain over all
the component characters. Mukherjee and Nayak
(1997a) observed that LN and NZA are the two most
important components of SBR in order of their
magnitude of direct contribution towards the total
disease, estimated by path coefficient analysis. Adoption
of any selection index with a minimum number of
component characters and maximum possible selection
efficiency in terms of maximum expected genetic
advance would be the most efficient and would have
wider application value. Construction of selection
indices from the estimates of the genotypic and
phenotypic variance and covariances of 10 components
of slow-blasting resistance in rice, the economic weight
of each component and comparison of the expected
genetic advance and relative selection efficiency,
revealed the superiority of the single-component index
6.42 LN and the two-component index 5.61 LN + 14.67
NZA over rest of the multiple-component indices
(Mukherjee et al., 1996). Sequential addition of the
components to the index one by one, did not result in
any appreciable gain in terms of predicted genetic
advance and relative selection efficiency due to the
component characters   as well as ranking order of the
tested 15 rice genotypes from those by direct selection
through the parameter AUDPC. Hence, they
emphasized the importance of the single component-
index 6.42 LN and the two-component index 5.61 LN +
14.67 NZA for quick and easy identification of slow-
blasting rice genotypes. The detailed methods for
estimation of NZA (Mukherjee et al., 1997a), and CZA
(Mukherjee and Nayak, 1997b), IF and IE (Mukherjee
et al., 1997b) for rice blast disease have been
developed. The difficulty in estimation of several
components of resistance to rice blast disease could be

overcome by restricting the critical observations on the
components of resistance to the third leaf at seedling
stage and fourth leaf at tillering stage (Mohapatra et
al., 2001).

Analysis of parameters for evaluation of
resistance
The proportion of disease in the host plant, when plotted
against time, gives a disease progress curve, which is
usually sigmoid; although other types of curves are
often encountered. The rate-reducing resistance can
be assessed by quantification and comparison of such
disease progress curves. Although it is difficult to
classify disease resistance into discrete classes, the
rate-reducing resistance can be recognized among
several genotypes based on a sound knowledge on the
host-pathogen system with the help of an efficient
evaluation system. The disease resistance in different
plant-pathosystems has so far been assessed through
estimation of the parameters like the final disease
severity (FDS), the mean disease severity (MDS), the
scoring by standard evaluation system (SES) (IRRI,
2008), the area under disease progress curves
(AUDPC) (Shaner and Finney, 1977), the relative area
under disease progress curve (RAUDPC) (Fry, 1978),
the logistic apparent infection rates (r) (Van der Plank,
1963), the Gompertz apparent infection rates (k)
(Berger, 1981), the time required for the disease to reach
a specific level of severity in logistic (T50r) or Gompertz
(T50k) models (Shaner and Finney, 1977), the logit
(logita) or gompit (gompita) line intercepts, the index-
score values (IS) (Mukherjee et al., 1996), the infection
gradient (g) (Gregory, 1968), the velocity of the disease
progress (v) (Minogue and Fry, 1983) or  the genotype-
scores on first (PC-1) and second (PC-2)  principal
components obtained through the principal component
analysis (PCA) (Zobel et al., 1988). Each of the
parameters has its own advantages and disadvantages
as well. It cannot be taken for granted that a single
parameter will fit into all the plant-pathosystems and
vice versa.

Relative importance of parameters
The disease progress curve encompasses within it
various elements of the host, the pathogen and the
environment active at different stages during the course
of the epidemic development and thus can be considered

Mukherjee et al.Partial blast resistance in rice
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as a complete expression of the anatomy of the disease.
One can dissect out these elements, analyse, compare
and classify the disease progress curves. Kranz (1974a)
noted that comparative epidemiology is primarily, a
quantitative empirical science that includes plotting of
the disease progress curve, its transformation and
elaboration by statistical, mathematical and computer
models. The disease progress curves are of limited use
as a method of comparison unless subjected to (i)
smoothening the curves (ii) transforming the curves into
linearity or curvelinearity and (iii) verifying significant
differences among them; which could be achieved by
estimation and comparison among different parameters.

The relative importance of 12 parameters in
characterisation of rice blast disease progress curves,
determined by the degree of variability and inter-
correlations among them estimated through factor
analysis, revealed maximum inter-correlations among
FDS, MDS, AUDPC, RAUDPC, r, k and PC -1
consistently for all the nine seasons by way of their
inclusion in to factor-1 which accounted for 44.98 to
62.16% of variation during nine seasons of testing with
a mean of 54.54%. Besides, the inter-correlation among
themselves, each of them was significantly associated
with rest of the parameters. Among them the logistic
apparent infection rate has been widely used for analysis
of epidemics as a very useful parameter in several
plant-pathosystems including rice-blast pathosystem.
However, serious drawback in the logistic apparent
infection rate as a statistic for studying the rate-reducing
resistance has been pointed out (Wilcoxson et al., 1975;
Shaner and Finney, 1977; Berger, 1981; Luke and
Berger, 1982). Berger (1981) reported considerable
variation in the logistic apparent infection rate and was
of the opinion that some of the information in the disease
progress curve are lost in the calculation of r due to the
errors introduced by lack of linearity, since it is strongly
influenced by minor differences in low disease severities
early in the season, which becomes much larger when
transformed to logit x/(1-x). According to him, the
Gompertz model avoids the curvelinearity associated
with the logistically transformed values resulting in
accurate estimation of the epidemic rate, projection of
future disease severity and determination of initial
disease in nine plant-pathosystems. The Gompertz
transformation was also reported to be more consistent
in detecting the degree of slow-rusting in oats (Luke

and Berger, 1982), late blight of potato, leaf spot of
celeri and rust of beans (Waggoner, 1986) and several
other plant-pathosystems. On the other hand, a better
fit of the logistic model was claimed with wheat
powdery mildew-pathosystem (Fried et al., 1979).
Analytis (1973) and Berger & Mishoe (1976) obtained
a good statistical fit with Gompertz, Bertalanffy and
Mitscherlich transformations in several plant-
pathosystems. Mohapatra et al. (2008) observed both
logistic as well as Gompertz models fitting well into the
rice blast-pathosystem.

The two parameter, logit-line intercept (logita)
as well as gompit-line intercept (gompita) were found
to be of some value for comparing the disease progress
curves, as an indicator of initial start of the epidemics,
but were highly inconsistent in expression of the true
nature of the disease progress curve, as evidenced by
their poor association with other parameters over nine
seasons of testing. The lower 'a' values obtained for
more resistant genotypes could be interpreted as an
indicator of initial date of start of epidemic and greater
delay in onset of epidemic. On the other hand, the
reverse should have happened for the fast-blasting
genotypes, which was not always true. This is probably
the reason why these parameters were inconsistently
included in to either factor-1 or 2 over different seasons
of testing. The two parameters namely; T50r and T50k
showed maximum inter-correlations and were
consistently included in factor-2, accounting for 24.72
to 36.17% of the variation with mean of 31.03% for all
the nine seasons of testing and thus were considered
as the second ranking parameters, even though they
embodied both the position and the slope of the
transformed disease progress curves.

The estimates of the parameter AUDPC
resulted in a better visual comparison among the
genotypes, correctly reflected the disease development
using all the data available, did not obscure the variation
in rate of disease development, exhibited distinct
differences among the genotypes, proved most
convenient for summation without involving complicated
data transformations and was least influenced by minor
differences in disease severity early in the season and
hence was considered superior to other parameters
(Mohapatra et al. 2014). Kranz (1974a,b) analysed
different elements of disease progress curves in various
pathosystems through factor analysis and reported
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AUDPC as one of the important elements in addition
to the logistic apparent infection rate. Similar
conclusions were also drawn for stem rust resistance
in wheat (Wilcoxson et al., 1975), slow-mildewing in
Knox wheat (Shaner and Finney, 1977), late blight
resistance in potato (Fry, 1978) and slow-blasting
resistance in rice (Mukherjee et al., 2005; Mohapatra
et al., 2014). The only disadvantage that, it has to be
calculated from a common time base, since it is a
product of time and severity, could be avoided by
estimating the relative area under disease progress
curve (RAUDPC) for easy comparison between
genotypes over different seasons of study.

Principal component and factor analysis
It is of interest to note here that the genotype-score on
PC-1 emerged as one of the first ranking parameters
due to the fact that the ranking of the genotypes on
PC-1 was continuous during all the nine seasons of
testing and PC-1 alone accounted for more than 90%
of the variation in the communality, with a strong
association with all the parameters (Mohapatra et al.,
2014). The parameter PC-2 was consistently
recognised as the 3rd factor during all the nine seasons
of testing, which accounted for 8.60 to 18.89% of the
variation with a mean of 11.43% and was not associated
with the parameters under factor-2 i.e., T50 r and T50 k
and also gompit-a. One can choose any of the first
ranking parameters from among these cafeteria of 12
parameters giving high preference over AUDPC and
RAUDPC and least preference over FDS and MDS
for preliminary screening of large number of test
material and at a later stage relying upon the clustering
and ordination of genotypes derived through multivariate
analyses, for identification of rate-reducing resistance
in rice blast-pathosystem depending upon the available
resources for computation of the parameters.

Practical application of the parameters
The rate-reducing resistance to rice blast disease has
been evaluated mostly through estimation of apparent
infection rate (Rodriguez and Galvez, 1975; Villareal et
al., 1980; Perez Mangaz, 1981; Ahn, 1981; Ahn and
Ou, 1982), AUDPC and r (Marchetti, 1983; Marchetti
and Zianghua, 1986), terminal disease severity and r
(Sah and Bonman, 1992), diseased leaf area and
AUDPC (Marchetti and Zianghua, 1986, Bonman et

al. 1989,1991), AUDPC, lesion number (LN) and lesion
size (Wang et al., 1989). Index score values using the
single component index, 6.4 LN, was found to be highly
effective in identification of slow-blasting rice
genotypes with 93 % of relative selection efficiency
(Mukherjee et al., 1996). Slow-blasting resistance was
evaluated by adopting different parameters, among
which AUDPC, RAUDPC, r, k, T50r, T50k, FDS, SES
score, ISLN, ISLN+NZA and PC-1, of which AUDPC
and RAUDPC were found to be superior expression of
resistance (Mohapatra et al., 2014). The effect of
nitrogen fertilization on the expression of slow-blasting
resistance in rice was evaluated based on nine
parameters, among which LN, AUDPC, RAUDPC, r,
and k were found to be superior over T50r, T50k, logita
and gompita (Mukherjee et al., 2005).

Methods for estimation of the parameters
It is worth elaborating the methods of estimation of a
few parameters for easy understanding and adoption
by the young researchers. The proportion of the host
tissue damaged due to the disease in a genotype
expressed as the percent disease severity on the last
day of observation, when the disease reaches a level
of 100% severity in the susceptible check can be
considered as the final disease severity (FDS). The
final disease severity can be divided by the number of
days from initiation of the disease symptom till the last
day of observation in a particular genotype, to arrive at
the mean disease severity (MDS) level and is expressed
as the per cent disease severity per day. The area under
disease progress curve (AUDPC) can be estimated
following the method suggested by Shaner and Finney
(1977) which is given by:

where,

xi = the proportion of host tissue damaged at the ith

      day;

ti = the time in days after appearance of the disease at
      the ith day and

n = the total number of observations.

The values of AUDPC can be normalized by
dividing with the total area of the graph (i.e., the number
of days from the first appearance of the disease until

( ) [ ]i+1 i i+1 1
1

AUDPC X +X / 2 t -t ;
n

i-
= åé ùë û
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end of the assessment period), following the method
suggested by Fry (1978). The normalized AUDPC is
referred to as the relative area under disease progress
curve (RAUDPC).  The apparent infection rates in
logistic (r) model (Van der Plank, 1963) as well as
Gompertz (k) model (Berger, 1981), can be estimated
as the regression coefficients of the logit or gompit x
over time (days), presented as per unit per day; logit x
being loge[x/(1-x)] and gompit x being -loge[-logex],
the regression coefficient b being the apparent infection
rate r in logistic and k in Gompertz models. The Y-
intercept 'a' for both logistic (logita) and Gompertz
(gompita) models can also be considered as two
parameters.

The number of days required for the disease
to reach 50% severity can be estimated both in logistic
(T50r) and Gompertz (T50k) models (Shaner and Finney,
1977) as :

 T50 = logit or gompit  [ { 0.50/(1.0 - 0.50 ) } -
a] / b, using the values of the point of interception 'a'
and the regression coefficient 'b' determined from the
logit (r) or gompit (k) analyses for the respective disease
progress curves.

The genotype-scores on the first two principal
components (PC-1 and PC-2); estimated from the
principal component analysis (PCA) by considering the
genotypes as the entities and the disease score at
intermittent intervals as the variables; can also be
considered as two independent parameters.

The univariate and multivariate stability
statistics
Additive main effects and multiplicative
interaction (AMMI) analysis
The partial resistance is believed to be long lasting, more
durable and most stable. It is necessary to analyze stable
resistance of host genotypes or stable pathogenicity of
the pathogen strains under varied environmental
conditions. Several methods have been proposed to
analyze GEI or phenotypic stability (Lin et al., 1986;
Becker and Leon 1988; Piepho, 1998;). This method
can be divided into two major groups, univariate and
multivariate stability statistics (Lin et al. 1986). Joint
regression is the most popular among univariate
methods because of its simplicity of calculation and
application (Becker and Leon 1988), where as Additive

Main Effect and Multiplicative Interaction (AMMI) is
gaining popularity and is currently the main alternative
multivariate approach to the joint regression analysis in
many breeding programs (Annicchiarico, 1997). Joint
regression provides a conceptual model for genotypic
stability (Becker and Leon, 1988; Romagosa and Fox,
1993). The GEI from analysis of variance is partitioned
into heterogeneity of regression coefficients (bi) and
the sum of deviation (SS2di) from regressions. Finlay
and Wilkinson (1963) defined a genotype with coefficient
of regression equal to zero (bi = 0) as stable while
Eberhart and Russell (1966) defined a genotype with
bi= 1 to be stable. Mukherjee et al. (1998) considered
an ideal stable slow-blasting resistant cultivar as
possessing (i) low mean disease scores, (ii) least
response to environmental changes (bi = 0), and a
minimum deviation from regression (S2di = 0). Similar
considerations were also offered for identification of
stable bacterial blight resistant cultivars in rice by Nayak
and Chakrabarty (1986). Nayak et al. (2008b)
considered the pathogen strains of Xanthomonas
oryzae pv. oryzae possessing mean pathogenicity levels
greater than the population mean, unit regression
coefficient (bi = 1) and minimum deviation from
regression (S2di = 0) as stable virulent pathogen strains
and those possessing regression coefficient greater than
unit (bi > 1), deviation from regression greater than
zero (S2di > 0) as most unstable.

Most biometricians consider S2di as stability
parameter rather than bi (Eberhart and Russell, 1966;
Becker and Leon, 1988). According to the joint
regression model, a stable variety is one with a high
mean yield, bi = 1 and S2di = 0 (Eberhart and Russell,
1966). Wricke (1962) suggested using GEI for each
genotype as a stability measure, which he termed as
ecovalance (Wi

2). Shukla (1972) developed an unbiased
estimate using stability variance (si

2) of genotypes and
a method to test the significance of (si

2) for determining
stability of a genotype. Francis and Kannenberg (1978),
used the environmental variance (S2xi) and the
coefficient of variation (CVi) to define stable genotype.
Comparison among all these stability parameters
through Spearman's coefficient of rank correlation
revealed   to be significantly correlated with Wi

2, bi,
S2di, si

2; and Wi
2, significantly correlated with bi, S2di,

si
2; bi was significantly correlated with S2di, si

2 and
S2di with si

2. They concluded that among the joint
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regression stability measures, S2di was largely used to
rank the relative stability of cultivars, but bi could be
used to describe the general response to the goodness
of environmental conditions, whereas, S2di actually
measures the yield stability. However, AMMI, S2di, Wi

2,
si

2, S2xi were generally found to be important in
determining the comparative stability. Since AMMI
combines analysis of variance and principal component
analysis in one model (Yau, 1995; Purchase, 1997), it
was found useful in describing both the GxE interaction
and the stability analysis.

Purchase et al. (2000) compared various
statistical procedures for assessing the yield stability
of the wide range of wheat genotypes grown under
dry land conditions to determine the most suitable
method. They performed different statistical analyses
like: (i) Shukla's procedure of stability variance (Shukla,
1972); (ii) Lin and Binn's cultivar performance measure
(PD) (Lin & Binns, 1988); (iii) Finlay and Wilkinson's
regression analysis and coefficient (bi) (Finlay &
Wilkinson, 1963); (iv) Eberhart and Russell's deviation
from regression (S2di ) (Eberhart & Russell, 1966); (v)
Wricke's ecovalence (Wi) (Wricke, 1962); and (vi) the
AMMI model (Gauch, 1988) to determine yield stability.
A critical comparison among all these methods done
through Spearman's ranking order correlation
coefficient test resulted in the superiority of AMMI
Stability Value (ASV), derived from the AMMI model,
as the most appropriate.

Farshadfar et al. (2011) studied the
relationships, similarities and dissimilarities among five
yield-stability statistics in wheat genotypes (Triticum
aestivum L.). These yield stability statistics are:

AMMI stability value (ASV)
AMMI stability value (ASV) as described by Purchase
et al. (2000), can be calculated

 as follows:

Where,

SSIPCA1 / SSIPCA2 is the weight given to the IPCA1 value
by dividing the IPCA1 sum of squares by the IPCA2
sum of squares. The larger the IPCA score, either
negative or positive, the more specifically adapted a
genotype is to certain environments. Smaller ASV scores
indicate a more stable genotype across environments.

Sustainability index (SI)
The sustainability index can be estimated by the following
formula as described by Babarmanzoor et al. (2009):

SI = [(Y-sn)/ YM] × 100

where,

Y= Average performance of a genotype,

sn = Standard deviation and

YM= Best performance of a genotype in any year

Stability index (I)
The stability index (I) can be computed following the
methods suggested by Rao et al. (2004) which is given
by:

where,

        = Average performance of the ith genotype,

         = the overall mean,

   si
2=  Sukla's (1972) stability variance of the ith

            genotype,

    n = Number of environments.

The genotypes with highest stability index could be given
top ranking and so on.

Yield stability index (YSI) and Rank-Sum (RS)
The yield stability index (YSI) can be calculated by the
following formula:

YSI = RASV + RY

where,

RASV is the rank of AMMI stability value, RY is the

_
Y
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rank of mean grain yield of genotypes across
environments.

Thus, YSI incorporates both mean yield and
stability in a single criterion. Low values of this
parameter shows desirable genotypes with high mean

yield and stability.

Rank sum (RS) = Rank mean (R) + Standard deviation
of rank (SDR).

RS incorporates both yield and yield stability in
a single non-parametric index. Genotypes with the least
RS are considered stable with high grain yield.

Standard deviation of rank (SDR) can be
measured as:

where,

Rij is the rank of Xij within the ith environment,

( )iR  is the mean rank across all environments for the
ith genotype and

SDR = (Si
2)0.5

The relationships among the yield stability
statistics can be derived by conducting principal
component analysis (PCA) based on the rank correlation
matrix using the software STATISTICA.

Farshadfar et al. (2011) concluded through
principal component analysis of these yield stability
statistics that SI and I are not suitable stability indices
for determining stable genotypes with high grain yields.
On the other hand, yield stability index (YSI), which
incorporates ASV and mean grain yield in a single non-
parametric index, and RS (R + SDR) were the most
desirable indices for determining the most stable
genotypes with high grain yields. The application of such
stability statistics for identification of stable resistant
genotypes in any plant pathosystem has not been made
so far and hence needs to be explored with necessary
modifications for disease resistance.

  The most recent development comprises a
multiplicative interaction model, which was first

introduced in social science (Crossa, 1990), that was
later adapted to the agricultural context as AMMI
(Piepho, 1996). This model was considered appropriate
if one is inserted in predicting genotypic yields in
specific environments (Annicchiarico, 1997). It
combines the analysis for the genotype and environment
main effect with several graphically represented
interactions for principal component analysis (IPCAs)
(Crossa, 1990; Abamu and Alluri (1998). Thus, it helps
to summarizing the pattern and relationship of
genotypes, environment and their interaction (Gauch
and Zobel, 1996).

The univariate and multivariate stability
statistics (Lin et al., 1986) have been proposed and in
wide use to analyse genotype x environment interaction
or phenotypic stability. The Joint Regression Analysis
(JRA) is most popular among the univariate methods
because of its simplicity of calculation and application,
and it provides a conceptual model for genotype stability.
The application of regression model has been made for
stable blast resistance in rice (Mukherjee et al. 1998,
Gu et al. 2004) and stable bacterial blight resistance in
rice (Nayak and Chakrabarty 1986; Nayak et al.
2008b). Mukherjee et al. (2013b) made an attempt to
recognize stable blast resistant genotypes through
application of the regression models developed by
Eberhart and Russell (1966), Perkins and Jinks (1968)
and Freeman and Perkins (1971) and the Additive Main
effects and Multiplicative Interaction (AMMI) models.
They concluded that both JRA and AMMI models were
equally potential in partitioning genotype-by-
environment interaction in rice blast-pathosystem.
However, AMMI analysis and GGE biplot display were
more informative in differentiating genotype response
over environments, describing specific and nonspecific
resistance in genotypes, and identifying the most
discriminating environments, and thus, could be useful
to plant pathologists as well as breeders in supporting
breeding programme decisions.  In an attempt to analyse
and interpret host × pathogen interaction in rice bacterial
blight pathosystem, the AMMI analysis and biplot display
facilitated in a better understanding of the host ×
pathogen interaction, adaptability of pathogen isolates
to specific host genotypes, identification of isolates
possessing stable pathogenicity and most discriminating
host genotypes, which could be useful in location
specific breeding programmes aiming at deployment
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of host genotypes in bacterial blight disease control
strategies (Nayak et al, 2008ab).

The great potentiality of AMMI model was
demonstrated for broom rape resistance in faba beans
(Flores et al, 1996), identification of stable blast
resistance in rice (Abamu et al, 1998), the differential
host pathogen interactions between Rhizoctonia solani
isolates and tulip cultivars (Schneider et al., 1999),
between 10 rice yellow mottle virus isolates and 13
differential host genotypes (Onasanya et al., 2004) and
late blight resistance in potato (Forbes et al, 2005).
Host-pathogen interaction between 52 isolates of
Xanthomonas oryzae pv. oryzae and 16 rice
genotypes employing AMMI model (Nayak et al., 2008
a,b) and between 8 isolate groups of Pyrenophora teres
and 13 barley line groups was analyzed with the help
of GGE biplot display analysis (Yan and Falk, 2002) to
arrive at some valuable conclusions on their
relationships.  Stable net blotch resistance in barley was
identified by application of both AMMI and JRA models
(Robinson and Jalli, 1999).

The multivariate statistical methods are very
useful in unravelling patterns in multivariate data from
phytopathological studies, especially in epidemiology,
ecology, pathology population biology and disease
management, and hence these methods should be
incorporated into phytopathological research because
of their potential for providing a holistic insight into plant
disease epidemics (Sanogo and Yang, 2004). These
multivariate statistical tools encompass three major
tools: (i) Ordination: comprising of principal component
analysis, principal coordinate analysis, discriminant
analysis, correspondence analysis, multidimensional
scaling and factor analysis; (ii) Discrimination:
comprising of  discriminant analysis, multiple logistic
regression, multivariate analysis of variance and cluster
analysis; and (iii) Canonical: comprising of canonical
correlation, canonical correspondence and redundancy.
Ordination aims at describing data by identifying a
reduced data dimension of a few variables that account
for the greatest amount of variability in the data.
Discrimination aims at delineating experimental groups
based on a set of variables. Canonical aims at describing
and predicting the relationship between two sets of
variables.

The AMMI model can be applied, with additive

effects for isolates (I) and host genotypes (G), and
multiplicative term for I×G interactions ( IGI). The
AMMI analysis, first fits additive effects for isolates
and host genotypes by the usual additive analysis of
variance (ANOVA) procedure, and then fits
multiplicative effects for IGI by principal component
analysis (PCA). The AMMI model is

Yij= m +gi+ej+S lk£ik Y jk+Rij

where,

Yij is the lesion length of the ith isolate in the jth host
    genotype,

gi  is the mean of the ith isolate minus the grand mean,

lk is the square root of the eigen value of the PCA
    axis k

£ik and Yjk are the principal component scores for PCA
    axis k of the ith isolate, and the jth host genotype,
    respectively

Rij is the residual.

The host genotypic and isolate PCA scores are
expressed as unit vector times the square root of lk
i.e.,

host genotypic PCA score= lk
0.5 Yik;

isolate PCA score=lk
0.5 £ik (Zobel et al., 1988).

The AMMI stability index 'Di', which is the
distance of interaction principal component (IPC) point
with origin in space, was estimated according to the
formula suggested by Zhang et al. (1998) as:

Di = S Y2
is

where,

c    is the number of significant IPCs,

Y2
is is the scores of the Isolates i in IPCs.

The AMMI analysis can be conducted using
the computer software IRRISTAT for windows, version
5. To assess fitting AMMI model, predictive and post-
dictive approaches offered by Zobel et al. (1988) can
be applied to the data.

AMMI biplot display
The graphical representation of AMMI-1 biplot reveals
the main effect means on the abscissa and the IPCA-1
scores of the host genotypes as well as the environments
simultaneously on the ordinate. The interaction is

Mukherjee et al.Partial blast resistance in rice
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described in terms of differential sensitivities of the
genotypes or pathogen strains to the most discriminating
environmental variable that can be constructed.
Displacement along the abscissa reflects differences
in main effects, whereas displacement along the
ordinate illustrates differences in interaction effects.
Host genotypes or environments or pathogen strains
appearing almost on a perpendicular line have similar
means and those falling almost on horizontal line have
similar interaction patterns. Genotypes with IPCA-1
scores close to zero have small interactions and hence
show wider adaptation to the tested environments. A
large host genotypic IPCA-1 score have high
interactions and reflects more specific adaptation to
the environments with IPCA-1 values of the same sign
(either positive or negative). The scores and main
effects can be read from the graph and used to predict
the expected level of resistance for any host genotype
and environment combination (Schneider et al.1999,
Nayak et al. 2008b, Mukherjee et al. 2013b).

AMMI-2  biplot (Fig. 3) is a graphical
representation in which genotypes and environments
or pathogen strains and host genotypes are displayed
simultaneously. The interaction is described in terms of
differential sensitivities of the genotypes to the most
discriminating environmental variables (AMMI-axes).
For simple interpretation of the biplot the genotypes
with vector end points far from the origin contribute
relatively more to the interaction than those with vector
end points close to the origin. The biplot displays both
host genotypes and environments or pathogen strains
and host genotypes in four sectors depending upon the
positive or negative signs of the scores on first two
principal components. Sector-1 represents host
genotypes pathogen strains or environments with
positive IPCA-1 as well as IPCA-2 scores, while sector-
2 represents positive IPCA-1 and negative IPCA-2
scores. Sector-3 represents negative IPCA-1 as well
as IPCA-2 scores and sector-4 represents negative
IPCA-1 and positive IPCA-2 scores.

A polygon drawn in the biplot by joining the
host genotypes or pathogen strains located farthest from
the biplot origin encompassing all the host genotypes or
pathogen strains, facilitates identification of the
genotypes that are most resistant in specific
environments or the pathogen strains that are most
virulent to specific host genotypes. The vertex

genotypes in a sector are most or least resistant to the
environment falling in that sector or the vertex pathogen
strains in a sector are most or least virulent to the host
genotypes falling in that sector. The discriminating
ability of the environments or the host genotypes can
be judged by calculating the distance of each
environment or host genotype from the biplot origin.
The biplot not only displays the interaction patterns of
the host genotypes or the pathogen strains under study
but also facilitates the visual description of the
environments in a 'which win where' pattern as
described by Li et al. (2006).

Interaction pattern from response plot
Response plots indicate the nature of GEI with the main
effects of genotypes and environments removed. The
values plotted for 'each genotype group by
environments' / 'groups of pathogen strains by tested
host genotypes' are the deviations from additive main
effects predictions of each variable. The larger the
deviation, the greater is the interaction of the HG with
the environment. The response may be positive or
negative depending upon whether or not the HG resulted
in more or less effects than the main effects
expectation. The host genotypes with reasonably stable
resistance across environments or pathogen strains with
reasonably stable pathogenicity across the tested host
genotypes can be recognised from the response plot.
Following this procedure, Nayak et al. (2008b)
recognised 27 pathogen strains of Xanthomonas
oryzae pv. oryzae possessing stable pathogenicity for
low virulence and five pathogen strains possessing
stable pathogenicity for high virulence against 16 host
genotypes. The identification and use of virulent
pathogen strains possessing stable pathogenicity would
help in screening for resistant host genotypes and testing
of segregating generations in location specific breeding
programme for development and deployment of resistant
host cultivars in bacterial blight disease control strategy.
Mukherjee et al. (2013b) recognised 28 host genotypes
with mean disease scores much less than the grand
mean, small negative IPCA 1 scores and smallest
interactions, as possessing most stable non-race-
specific resistance to blast disease of rice.

Analysis of disease progress curves
Following the theory of Van der Plank (1963, 1968), it
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was expected that infection rate (r) would be a
valuable measure for comparison of disease epidemics
in a range of crop genotypes. However, infection rate
was the least useful of the various measures examined
as reported for different plant pathosystems (Eskes,
1983; Lebeda and Jendrulek, 1988). This may have been
a result of the uniform application of the logit
transformation and the inclusion of zeros and the small
values in the analysis. Since the small values were actual
measures of the disease levels at the time of disease
assessment, any requirement for their deletion or
modification is undesirable. The logit line intercept (a)
was found to be of value for comparing epidemic in
different cultivars. Lower 'a' values obtained for the
more resistant cultivars could be interpreted as an
indication of a greater delay in the onset of epidemic in
these cultivars. Such delay in epidemic onset was the
result of the vertical resistance present in the host
genotype (Van der Plank (1963, 1968). According to
him this vertical resistance necessitated a preferential
increase in the virulence component in the pathogen
population before the epidemic developed, and hence
the delay. However, the pathogen population (Puccinia
graminis tritici) in their experiments on the slow-rusting
and tolerance to rust in wheat did not change in virulence,
and the delay cannot be explained in these terms, even
though vertical resistance was undoubtedly with the
low intercept values in a number of cases (Rees et al.,
1979ab). Thus the application of regression analyses
to the data indicated that the separation of resistance
into different types (vertical and horizontal) by the slope
and nature of disease progress curves as suggested by
Van der Plank (1963, 1968) is not as distinct as
postulated.

Pattern analysis of disease progress curves
The average assessment over all the dates and the area
below the disease progress curve, permit reasonable
comparison of the epidemics among the host genotypes
and are simple to apply. However, these measures place
undue emphasis on high disease levels late in the
epidemic. It has been demonstrated that the use of
parameters may not necessarily describe the differences
in true field resistance with sufficient accuracy (Eskes,
1983). Kranz (1974a) was the first to suggest the
possibility of using cluster analysis in comparative
epidemiology. Kranz (1974b) referring to classification

as achieved by pattern analysis, stated that
classification problem may one day attain great
prominence in comparative epidemiology. Since
epidemiology deals with populations, it can be useful to
delimit more objectively groupings of individuals, strains,
races, varieties, treatments or reactions which are more
similar in epidemiological behaviour amongst themselves
than compares with other groupings. The use of pattern
analysis in epidemiological evaluation of wheat rust was
demonstrated by Thompson and Rees (1979) and also
Rees et al. (1979ab). The wide application of the
methods of multivariate analysis not only in the study
of field resistance in plants but also to plant pathology
in general was predicted by Lebeda and Jendrulek (1987
a,b).

The principal criteria for evaluating field
resistance are the dynamics of degree of disease spread
or in other words, the onset of epidemic and its progress.
The curves describing the growth of disease proportion
can be clustered together into groups according to
similarities in their courses. The comparison of
epidemics or disease progress curves has so far been
frequently used for testing the host-pathogen
interaction. Kranz (1974a,b) suggested the plotting of
disease progress curves, transformation of disease
progress curves and its elaboration by statistical,
mathematical and computer methods. It has however,
been expressed by several researchers that the
interpretation of epidemiological data only on the basis
of the 'r' or 'k' may be unsuitable. Both logistic and
Gompertz transformations are to a large extent
dependent on the approximation of values for which
the given transformation function is not defined. When
the number of values measured is small, this fact may
significantly affect the final calculated values of 'r' and
'k' parameters. Processing of epidemiological data by
the methods of multivariate analysis involving cluster
analysis and principal component analysis and their
comparison with other parameters can yield a
substantially greater amount of information (Lebeda and
Jendrulek, (1988). This fact was partly noted by
Thompson and Rees (1979), who suggested and
demonstrated the use of pattern analysis in
epidemiological evaluation of rust resistance in wheat.
It was believed that the application of multivariate
analysis not only to field resistance but also to
phytopathology in general may lead to important new
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discoveries (Lebeda and Jendrulek, 1987a,b, 1988).
Pattern analysis, by extracting and displaying the main
patterns and trends in multivariate data, often enables
one to obtain new perspectives of the problem under
consideration. Although it does not supplant other
methods for analysing epidemiological data, it does
provide a valuable complement to other methods.
Pattern analysis as commonly employed consists of the
joint numerical classification and ordination of a set of
entities on the basis of their attributes (Williams, 1976).
The numerical classification produces discrete groups
of like entities such that similarities within the groups
are greater that between groups. For analysis of any
one data set, the tested genotypes can be regarded as
entities possessing a number of attribute which are the
disease assessment scores at various assessment dates.
Ordination does not of itself separate groups of entities
but simply displays the relative geometric position of
the entities within a multidimensional space defined by
the attributes.

The authors and their associates attempted to
explore the (i) analysis of HxP interaction in blast and
bacterial blight diseases of rice (Nayak et al. 2008a,b,
2009)  (ii) analysis of components of resistance
(Mukherjee et al. 2013a) (iii) comparison of different
parameters for evaluation of resistance (Mukherjee et
al. 2005, 2010, Mohapatra et al. 2008, 2014) (iv)
identification of stable resistant genotype through
application of multivariate analysis involving cluster
analysis, principal component analysis and factor
analysis (Mukherjee et al. 2013a,b, Mohapatra et al.
2013), and (v) the genetic diversity of virulence among
the strains of Xanthomonas oryzae pv. oryzae (Nayak
et al. 2008 a,b,c) .

Mukherjee et al. (2013a) made an attempt to
identify the slow-blasting rice genotypes through
application of multivariate analysis of components of
resistance and reported that (i) the factor analysis
recognized three factors, each explaining distinct phases
of the pathogen like establishment, growth and
reproduction phases (Fig. 1), (ii) the cluster analysis
recognized groups of genotypes possessing distinct
slow-blasting and fast-blasting characteristics and (iii)
Super-imposition of the clustering pattern onto the
ordination figure of the genotype-scores on the planes
of PC-1 and PC-2, clearly displayed the geometrical
positioning of the slow-blasting and fast-blasting

genotype-clusters.

Genotype x environment interaction (GEI) of
42 rice genotypes tested over nine seasons was
analyzed to identify stable resistance to blast disease
incited by Magnaporthe oryzae (Mukherjee et al.
2013b). The GEI was analyzed following the regression
models as well as additive main effects and
multiplicative interaction (AMMI) model. Although, both
regression and AMMI models were equally potential in
partitioning of GEI, AMMI analysis and the biplot
display were more informative in differentiating
genotype response over environments, describing
specific and non-specific resistance of genotypes,
identifying most discriminating environments and thus
could be useful to plant pathologists as well as breeders
in supporting breeding program decisions.

The basic epidemiological data on per cent blast
disease severity scores, recorded at every alternate day
intervals were subjected to multivariate analysis
(Mohapatra et al., 2013). Cluster analysis classified the
rice genotypes into clusters of slow-blasting and fast-
blasting groups (Fig. 2). Super-imposition of clustering
pattern onto the planes of the ordination figures on the
first two principal components (PC-1 and PC-2) clearly
revealed the geometrical positioning of the slow-blasting

Fig. 2. Dendrogram depicting the similarity and successive
clustering of rice genotypes based on the blast disease
severity scores at different assessment dates.
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genotype-clusters nearer to the intersection between
the two ordinates and the fast-blasting genotype-
clusters away from it along PC-1 axis (Fig. 3). Thirty
two stable slow-blasting genotypes were recognized
by compilation of these data over a period of nine
seasons. The average blast disease progress curves
for each group of genotypes, obtained from the cluster
analysis and displayed in the ordination figure, clearly
displays the epidemic progress in these groups of
genotypes (Fig. 4).

Thus, AMMI analysis could provide (i) a better
understanding of the host x pathogen interactions
through analysis of variance, (ii) identification of
pathogen strains possessing stable pathogenicity or host
genotypes possessing stable resistance, and (iii)
specificity in pathogenicity pattern and adaptability of
the groups of pathogen strains to specific host genotypes
groups or host genotype groups to specific environments
in a 'which win where' pattern similar to those reported
in rice-bacterial blight pathosystem by Nayak et al.
(2008b).

Presentation of data sets
The huge data sets collected by the biological scientists
in general and the plant pathologists in particular need
to be analysed and presented properly in any scientific
forum or even in publications in scientific journals. The
usual practice is to present these data sets in frequency
distribution curves or in the form of histogram of
different frequency classes. The most informative
means of displaying a range of numerical data by
constructing box and whisker plots was invented by
Tukey (1977). A box plot can provide information about
the median, the upper and lower quartiles, the highest
and lowest values of the data set of which the first two
term is the central tendency for the data set and the
second and third terms are the measures of central
tendency for different parts.  In statistical analysis, a
box plot is a graph that can be a valuable source of
easy-to-interpret information about the sample under
study. It can provide information on the sample's range,
median, normality of the distribution and skew of the
distribution. It can also identify and plot extreme cases
within the sample.

It has been in use for medical, ecological,
educational and many other branches of science, but

Fig. 3. Ordination of genotype scores obtained from the
principal component analysis onto the planes of the first
two principal components ( PC-1  & PC-2) and
superimposition of the clustering pattern obtained from the
figure 2. The numerals against each point are the genotypes
and the alphabets are the genotype clusters depicted in
figure 2.

Mukherjee et al.Partial blast resistance in rice

Fig. 4. Average blast disease progress curves for each of
the four major groups of rice genotypes (A to D) obtained
from the hierarchical classification depicted in the
dendrogram (Fig. 2).
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its use in plant pathological data presentation is very
much limited. Quantification of the effectiveness of
recommended fungicides protocol established in 2002
on ray blight disease intensity in Pyrethrum (Tanacetum
cinerariaefoliun L.) caused by Phoma legulicula, to
determine the minimum disease intensity thresholds
beyond which yield is negatively impacted, was
presented in box plots by Pethybridge et al. (2007).
The distribution properties of six parameters estimated
over nine seasons of testing against rice blast disease
caused by Pyricularia grisea were presented in box
plots depicting the measures of dispersion in the data
sets (Mukherjee et al., 2010). The distributions of
response ratios for antibiotics, biological controls, and
systemic acquired resistance-induced products
evaluated for the control of fire blight of apple were
also presented in box-whisker plots which showed
strong evidence to suggest that among the three
products categories, antibiotics were the most effective
for fire blight control (Ngugi et al., 2011). These results
show strong evidence to suggest that among the three
products categories, antibiotics were the most effective
for fire blight control.  The distribution properties for
12 parameters estimated for evaluation of rice blast
disease severity on 42 rice genotypes tested across 9
seasons of study are presented in box plots (Fig. 5)
depicting the degree of dispersion in the population
estimated through 12 parameters for evaluation of
partial resistance. Shifting of the box position for all

the parameters towards the lower end signified that
the distributions are positively skewed. This was further
substantiated by the noticeable shift of the respective
medians towards the lower end of the boxes
(Mukherjee and Nayak, unpublished). Similar results
were also reported by Mukherjee et al. (2010) depicting
the measures of dispersion in the data for estimation of
area under disease progress curves in rice-blast
pathosystem from two data points. The degree of
dispersion in rice blast disease severity on 42 rice
genotypes tested across nine seasons of study were
also presented in box plots by Mukherjee et al. (2013b).
Thus the box and whisker plot have been proved to be
an informative way to display a wide range of numerical
data and the attention of the plant pathologists in general
and the rice plant pathologists in particular is drawn to
make use of such a valuable tool in presentation of
their data sets.

The box plots can be drawn following the
methods provided by Noville Hunt on the subject, "Box
plots in Excel 2007", either Excel 5/95, or Excel 97/
2000/2003 or in Excel 2007, available in the Network.

CONCLUSION
Partial resistance is a quantitative analysis of different
factors of disease development operating during the
progress of epidemic. Scanning of literature revealed
that extensive research has been done on analysis of
components of resistance, different parameters for
evaluation of resistance and analysis of disease progress
curves in different plant pathosystems. In this review,
we discuss analytical approaches that have been
reported so far. We discuss the merits and demerits of
each method of assessment. Analysis of components
of resistance, although is most accurate and convincing;
is time consuming, cost effective, labour intensive and
needs special facilities. It has been demonstrated that
the use of parameters may not necessarily describe
the differences in true field resistance with sufficient
accuracy (Eskes, 1983). The available research results
discussed herein, lead us to conclude that application
of multivariate analysis involving principal component
analysis, cluster analysis, factor analysis, the AMMI
analysis of the daily disease incidence data over the
entire period of disease development, the plotting of
the ordination figure and geometrical positioning of the
genotypes onto the planes of PC-1 and PC-2, will lead

Fig. 5. Box plots of 12 parameters for evaluation of 42 rice
genotypes across different seasons of testing for partial
resistance to rice blast disease.
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to the success in identification of partial resistant
genotypes. The recent review on the application of
several statistical tools for data analysis and
interpretation in rice plant pathology (Nayak et al., 2018)
and the present review on the assessment of partial
resistance to rice blast disease in particular, opened up
a new direction for the future generations of rice
pathologists in achieving the goal of identification of
resistant genotypes for adaptation in disease control
strategy.
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